Fyxers

Paragraph 1:

A big problem we encountered in agriculture was the fact that farmers are not adapting
food of their animals to their nutritional needs. Shifts in body temperature of the animal
suggest a different need of food. For example, when the body temperature of the animal
decreases more food is needed. The problem is that most of the time all animals get the
same composition of food and the same amount of this. This way its nutrition isn’t based on
the individual needs but more on the overall need of food for an animal. This means that a
cow that moves 3 times as much as another cow gets the same amount and composition of
food. This isn’t right. The nutrition of animal should be based on the needs of an animal.
This way also a lot of food is wasted, just now food waste is such an important topic as the
world population is increasing and food gets more scarce. Secondly food production is ways
from optimal because each animal doesn&#39;t get optimal nutrition. Think about it, when
a cow just gets some food fitting for that animal, that doesn’t mean it is fitting for that cow,
each of them have their on needs. When we fulfill those needs, the food that that cow
produces will improve as well. This means that with food based on nutritional needs each
individual animal will produce better and more products. This way we will need less animals
for the same amount of produce, which is better for the planet as well. So it comes down to
that first problem that farmers are not adapting food on the nutritional needs of their
animals. When we solve the first problem, parts of the problems of food waste and optimal
produce of an animal will be solved as well.

Paragraph 2:

Farmers are not adapting to the fact that because of the shifts in temperature animals have
different nutritional needs (they need more/less food). This affects both produce as well as
food waste. We chose this problem because of multiple reasons. Firstly this problem
connects to a multiple of general problems, we really like that by solving this we contribute
to different problems. When we solve this, we also solve parts of those. We can for instance
increase food production levels so we need less animals for the same amount of produce,
what is a good thing as we are in a nitrogen crisis. Than there is also a decrease in food
waste we can achieve by only give the needed amount of food. Lastly because we think we
can solve this problem and develop a prototype in the given time frame. Multiple studies
have shown the correlation of nutritional needs and external temperature. The following
study suggests a formula for which the alteration in nutrition can be calculated according to
temperature, weight and nutritional value. Other studies state that malnutrition causes
great decreases in produce and can even lead to diseases. This suggest that giving cattle too
much food under the wrong circumstances, would result in less produce. Thus has a
negative impact on a many fields, including environmental, economical, animal welfare and
so on. It ties in with the much bespoken ongoing nitrogen crisis. By optimalized the resource



use, the nitrogen in animal manure and the amount of manure could potentiallybe
minimalized. Our device entails a box which can be attached to the collar of the cow. It
features a Temperature sensor accelerometer and a heart rate sensor Temperature sensor
accelerometer and a heart rate sensor. The combined data of these sensor can give insight
in the nutritional needs of the cow, and those can therefore be optimalized in order to
maximise produce and minimalize the environmental footprint. We’ve build a user-friendly
interface in order to make this proces as easy as possible for the farmers. Data is stored on
an SD-card, as cows aren’t usually in range of wifi. The data can be retrieved later. Not only
is the sensor useful for optimilizing nutrition, but it could also be used to detect diseases
early on. For the device to work optimally, a fair amount of research would be required into
the behaviour and needs of a cow, which was a little beyond the scope of this project, but
our preliminary research could easily be extended. We believe that this product could
benefit many causes. Especially with the upcoming nitrogen crisis, this device could play a
key role in reducing the nitrogen in manure, which in turn would enable farmers to maintain
their income. We believe that upon further research this could become a successful
product.

(https://www.ncbi.nlm.nih.gov/books/NBK232316/)

Paragraph 3:

Parts:

- Two Arduino Uno’s

- 3D printed casing

- Powerbank

- Collar for the cow to wear the casing
- Rf- module for wireless data transmission
- SD-module

Sensors:

- Heart rate sensor

- Temperature sensor

- Accelerometer (X,Y,Z-acceleration)

We used a casing to protect the sensors and Arduino. The sensors that we used are an
accelerometer, a temperature sensor and a heart rate sensor. With the accelerometer we
wanted to measure the displacement, so the movement of the cow, and determine how
active the cow is. The temperature sensor, we wanted to put it against the cow to measure
its temperature. This way we could determine if the cow has a normal temperature, or if its
having a fever or cold. The heart rate sensor was to monitor the heart rate of the cow. We



thought that using a collar to put the casing around the neck would be the best way, as it is
usual for cows to have a collar. For the Arduino, we used one of our arduino’s and ordered
another one. One of the arduino’s was destined for the collar and another was for our
computer to gather the data on our computer. We took a powerbank of one of our group
members so that the arduino and sensors could be powered while being around the cows
neck.To get the live data from the cow, we wanted to make use of wireless data
transmission. For that we got the RF 315/433 Mhz Transmitter Receiver module. We also
got a SD module that would store the values that the sensor reads. Our idea was to store
the data to an SD card and let the RF transmitter send the data to the receiver that is on the
arduino connected to the computer. This ensures that the data is sent with less data loss.
Originally we also intended to include a way to process all the data received from the collar
with information about proper diet for a cow should eat to make a recommendation for the
farmer on how much each cow has to eat to grow as healthily as possible. If we had enough
time, we also wanted to include a food dispenser that knew how much food to give to each
cow. We figured that the cow collar was the most important part of our project, so that was
our main priority. We made the cow collar with the sensors, but we weren’t able to make
the food dispenser. For the software we created an interface with the Processing IDE in
which you could see the values of the sensors. With the Arduino IDE we programmed the
arduino to read the values from the sensors and we made recalculated the incoming values
to make them usable. For example, changing the analog values that are being read from the
temperature sensor and scaling it to degree Celcius. We tested our prototype on a cow.
Because the cow was moving around a lot, we couldn’t put on the collar so we just held it
against the cow to take the measurements. We put the casing to the collar using duct tape.
The casing has two holes that are for the heart rate sensor and the temperature sensor.
These two we put directly against the cow to give us an accurate as possible measurement
from both sensors. We tried to use the rf-22 module, but we couldn’t make it to work
together with the SD-module. The VirtualWire library and the SD module library both
needed the same pin to operate, so we couldn’t make the wireless communication work.
The SD-module and the rf-module work independently.

Paragraph 4:

| think it is clear what the prototype is about. Our team tested this prototype on a living
animal (that was the intention from the start). While testing the cow couldn’t move much
due to the collar not really being attached to the cow. It couldn’t be placed around the
cow’s neck. The prototype was held against the neck of the cow. Unfortunately the SD card
wasn’t able to measure the wanted data. This was due to the SD card not being installed
correctly in the prototype. Only at home could our team see the data and determine what
was measured. One reason could be that the cow moved so much, the SD card misplaced.
Another reason could be that the SD card was not installed correctly in the first place, so
would fail from the start. There have been observations during the testing. The cows move
very much and the collar wouldn’t be on the same place. Another observation is the size of
the prototype. The prototype was too big for the cow. This also resulted in the collar not
fitting on the cow. An optimization of the casing could greatly increase the efficiency since
the current prototype uses sharp edges and a tough, plastic, 3D-printed casing. This could



be replaced with a smoother and smaller measuring ‘box’. As of now, there are results
lacking and there to be learned. There is a base which could be optimised to become an
effective and better product.

Our Video: https://www.youtube.com/watch?v=C5xqbVrynkQ

TOPIC 6 (Pictures)



https://www.youtube.com/watch?v=C5xqbVrynkQ




Temperature: 22.2°C Pulse BPM: 40.0 X-Acceleration: 0.4
xY-Acceleration: -0.0

Z-Acceleration: 1.1
WARNING temperature is lower than usuall
WARNING hearthrate is lower than usual!










fritzing




TOPIC?7

Processing Code:

This class is the Main Class where everything is put together

' This version can receive data from sensor connected to arduino

Main mainA;

& Graphing graphingA;
import processing.serial.*;
Serial port;

float value[] = new float[7];

void setup() {
size (1000, 1000):
mainA = new Main()://
graphingA = new Graphing();
& port = new Serial{this, Serial.list{)[@], 9600);
}

void draw() {
background(22,44,65);

mainA.display();
graphingA.display();
loginMenu();
tableOfContents():

void keyPressed() {
loginkey():
}

This class is the graphing class, where the graph code is made and a txt file is being read out and
graph this graph is being split up in between each category.



s Graphing {

-ing DataTwo[][]; //Going through it ith for loop a2lso converting inte int data type
¢ loadData[l; //Loading file inside

//Variables for saving each value

float yPosData;

f1 y2PosDataj
f1 y3PosData;
f1 y4PosDataj)
fl y5PosData;
f1 y6PosData;
float yTPosData;}
f1 yBPosData;

float y9PosDataj
float ylB@PosData;

int fieldNum = 23

//Window size has to be mapped
int xMin = @3

int xMax = 600}

int yMin = 0;

int yMax = 6080}

Graphing () {

[/ smooth();

loadData = loadStrings("data/test.txt"); //loading string //Also text file path
DataTwo = new String[loadData.length][fieldNuml; //loading string Array into different string array with two rows for string arrays
for (int i=0; i < loadData.length; i++) { //For loop running through the length of the text file

DataTwo[i] = loadData[i].split(","); //String is being split up into different variable

1

}

void display() {
//background (#80C137);

for (int n=0; n < loadData.length; n++) { //For loop running through the array while converting it into int data type
yPosData = map(int(DataTwo[n]1[@1), xMin, xMax, @, width); //variable from int data type mapped in between canvas size

y2PosData = map(int(DataTwo[n][1]), yMin, yMax, 0, height);
y3PosData = map(int(DataTwe[n]1[2]), yMin, yMax, @, height):
y4PosData = map(int(DataTwo[n][3]), yMin, yMax, 0, height);
y5PosData = map(int(DataTwo[n][4]), yMin, yMax, @, height):
y6PosData = map(int(DataTwo[n][5]), yMin, yMax, @, height):
yTPosData = map(int(DataTwel[n][6]), yMin, yMax, @, height);
y8PosData = map(int(DataTwo[n]1[71), yMin, yMax, @, height):
y9PosData = map(int(DataTwol[nl[8]), yMin, yMax, 0, height);
yl@PosData = map(int(DataTwoe[n][9]), yMin, yMax, O, height):

}
rectMode (CORNER); //Positioning of the rectangle mode

fi11(#008BFA);
float x = 2080}
float x2 100!
fleat x3 200
float y = 100}

float yrec = 6
scale(0.35, 0.
noFill();
£911(%00BBFA) ;
rect

//Color of the graph rectangle

rect
rect
rect
rect

(x+20,
(x2+160,
(x3+300,
(x3+370,
(x3+440,

EH
EH

/1

ae;
35);

neight-value[@]+y, 38, yPosData);

neight-value[2]+y, 30,
height-value[4]+y, 30,
height-value[5]+y, 30,
neight-value[6]+y, 30,

//rectangle drawn not in for loop
y3PosData); //30 4s the width of the graph
y5PosData);
y6PosData) ;
yT7PosData);

This is the login class which we got from the internet here is the link:
https://forum.processing.org/two/discussion/25962/login-screen this class gives us the cabality to
log into the program (safty) with a username and password but we built in a tab function which will
let you skip the login for demo porpuses.



https://forum.processing.org/two/discussion/25962/login-screen

B //the login code s all copied from https

//declare global variables
boolean slides[] = {true, false, false, false, false, false, false, false,
@ String topText = "'

bottomText = """}
g wasText = "'y
ing bottomWasText = "'";
o boclezn username = truej

d boclezn appear = truej

//Function(Procedure) controls Login Menu.
I o loginMenu() {

if(appear){

if (slides[8] == trus) {
background(255) j
rectMode (CENTER) 3
fi11(255);
rect(308, 208, 380, 180);
rect(300, 400, 300, 100);
fill(e);
textSize(20)}
text(topText, 200, 215);
text(bottomText, 280, 375);
text(wasText, 200, 215);

//allows keyboard dinput for wvarious things
void loginkey() {
if ((keyCode ==
appear = false;

1

if (slides[0] == true) {

if ((keyCode == “CE && topText.length() > 8))

{
if (username == true) {
topText = topText.substring(@, topText.length()
T
3
if ((keyCode == BACKSPACE && bottomText.length() >

if (username == false) {

iy
} else if (keyCode == ENTER) {

if (username==true) {
username = false;
wasText = topText;

1

bottomWasText = bottomText;

slides[@] = false;
slides[1] = true;

} else if ((key »= 32 && key <= 126))//add char to
{

if (username == true) {
topText = topText + key}

false, false,

-1);

@) ) {

returny //Now ready to start collecting password

1} else println("failed ', wasText, bottomWasText);

string

//forum.processing.org/two/discussion/25962/login-screen

false};

bottomText = bottomText.substring(®, bottomText.length()-1);

if (wasText.equalsIgnoreCase(''usr'') && bottomWasText.equalsIgnoreCase("pwd")) {



} else if (keyCode == ENTER) {

it (username==true) {

username = false;
wasText = topText;
~eturny //Now ready to start collecting password

}

bottomWasText = bottomText:

it (wasText.equalsIgnoreCase('"usr'") && bottomWasText.equalsIgnoreCase('"pwd'")) {
slides[0] = false;
slides[1l] = true;
} else println("failed ", wasText, bottomWasText):
} else if ((key »= 32 && key <= 126))//add char to string

{
it (username == true) {
topText = topText + key;
} else {
bottomText = bottomText +key:
1
1

s println{topText+" ++ "+bottomText);
76
g8 void tableOfContents() @
it (slides[1l] == true) {
background(255) ;
fAll{e);
rect(250, 250, 30, 30):

The Main Class is about the basic objects which create the interface. It also includes the code for
getting the data over from the Arduino into processing. We got the Graphwriter for getting the data
from Arduino to processing from the website
http://wiki.edwindertien.nl/doku.php?id=education:physicalcomputing:04 making things mov



http://wiki.edwindertien.nl/doku.php?id=education:physicalcomputing:04_making_things_mov

class Main {

PFont font;

int C'F;
int B;

int Xpostext =

|
@
we

int Ypostext = 0}

PFont mono;
PImage WIFIzero;
PImage WIFIone;
WIFItwo;
WIFIthree;

PImage
PImage
PImage

PImage

boolean
boolean
boolean
boolean
boolean

WIFIfour;
logo;

Wifizerob = tru

Wifioneb =
Wi fitwob =
Wifithreeb
W+ 4 fourb

char header[] = {'H', 'T',
int NEWLINE = 10;

int diffValue[] = new int[2]:

String buff = "'
float[] x = new float[28];
float[] v = new float[20];
float seglength = 9;

PrintWriter dataFile;

'Z'};//depends on how many sensor we have



54 PrintWriter dataFile:

6 Main () {

57 font = loadFont("AppleSDGothicNeo-Ultralight—48.v1lw'"):
58 textFont(font):

ige] dataFile = createWriter("cowData.txt"):

i) }

i1

o void display() {

I

14 while (port.available() > 0) {
3 serialEvent(port.read()): // read data
LG 1
7 WIFIzero = loadImage('"images/WIFIzero.png');
18 WIFIone = loadImage('"images/WIFIone.png");
19 WIFItwo = loadImage('"images/WIFItwo.png");
10] WIFIthree = loadImage("images/WIFIthree.png');:
51 WIFIfour = loadImage('"images/WIFIfour.png');
52 logo = loadImage("data/FYXERSlogo.png'):
44
5 it (Wifizerob == true) {
56 image (WIFIzero, 40, 35);
7 I print("zero'"):
8 }
59 it (Wifioneb == true) {
5@ image (WIFIone, 40, 35);
51 J/ print("one"):
32 1
3 it (WHfitwob == true) {
image (WIFItwo, 40, 35):

o R

[/ print("two"):

}

- if (Wifithreeb == true) {
8 image (WIFIthree, 40, 35):



1

G4 image (WIFItwo, 40, 35);
55 f/ print("two")

}
T if (Wifithreeb == true) {

image (WIFIthree, 40, 35);
J oprint("three');

i3] }

F1 if (Wififourb == true) {
r2 image (WIFIfour, 46, 35);
73 /1 print("four");

i 1

[6 image (logo, 750, 1@):

g F11(71, 169, 201):

e} textSize(32);
10] text("NUTRITIOMNAL MEEDS', 3008, 70);

11 if (wvalue[l]<36) {

32 text("Temperature s low, the cow needs food", 200, 110):

33 }

14 if (value[l]>40) {

5 text("Temperature s high, the cow needs water and fat added to its diet ", 200, 110);
1

38 textSize(32);

39 fi11(255);

o] text("Temperature: " +wvaluel[l] +"°C'", 58, 550);

31 [/ text("Humidity: " +value[Q]+"%", 50, 300):

32 [/ text("Dew Point: " +value[2]+"%", 50, 400)

13 text("Pulse BPM: " +value[3]*10, 380, 550);
text('"X-Acceleration: " +value[4], 680, 550);
text("Y-Acceleration: " +value[5], 680, 600);

16 text("Z-Acceleration: " +value[6], 680, 650);

18 [/text("SD Card Storage:", 50, 400);



//text("SD Card Storage:", 50, 400):
J/text("WIFT Sdignal:", 58, 500):
//text("Hearth Rate:", 58, 600):

if (value[l1l]<36) {

text ("WARNING temperature 1is lower than usual!", width/5, 700);
1
if (value[l]>40) {

text ("WARNING temperature is higher than usual!", width/5, 700):
1
if (value[3]+18<50) {

text ("WARNING hearthrate dis lower than usual!", width/5, 750);
1
if (value[3]*10>80) {

text ("WARNING hearthrate is higher than usuall!", width/5, 758):;
1

vold serialEvent(int serial)

{

try { /! try-catch because of transmission errors

dataFile.println{char(serdial)):
if (serdal != NEWLINE) {
buff += char(serial):
1 else {
println(buff):
/{ The first character tells us which axis this value 1is for
char ¢ = buff.charAt(0);
// Remove it from the string
buff = buff.substring(1l):
// Discard the carrdiage return at the end of the buffer
buff = buff.substring(@, buff.length()-1):
// Parse the String into an integer




void serialEvent{int serdial)

{
try { // try-catch because of transmission errors
dataFile.printlni{char(serial));
it (serial != NEWLINE) {
buff += char(serdial);
} else {
println(buff):
// The first character tells us which axis this value dis for
char ¢ = buff.charAt(0):
// Remove it from the string
buff = buff.substring(l);
// Discard the carriage return at the end of the buffer
buff = buff.substring(®, buff.length()-1);
// Parse the String into an -integer
for (int z=0; z<7; z++) {
it (¢ == header[z]) {
value[z] = Float.parseFloat(buff);
1
1
buff = " // Clear the value of "buff"
1
1

catch(Exception e) {
println("no valid data");

}

print();

Arduino Code:



wWrite

5 example shows how to read and

it:

wWrite

data to

5D: SDCARD SS5_PIN)

This example code is in the public domain.

and from

an

5

D

card

file

15-temp-humiditv-sensor

$#include <SPI.h>
#include <SD.h>

#include "cactus_io_ SHT15.h"
File myFile;

f/Arduino Uno, Rccelerometer
//Accelerometer pins (analog)
//PULSESENSCR

#define USE_ARDUINC INTERRUPTS trus
#include <PulseSensorPlayground.h>

const int PulseWire = 4;
int Threshold = 400;
PulseSensorPlayground pulseSensor;

//TEMPERATURE & HUMIDITY

SHT15 sht = SHT15(2, 3):

/ /BCCELERCMETER

const int pinx = 1;
const int piny = 2;
const int pinz = 3;

J/wariables to =tore accelerometer output

int wvalx = 0;
int waly = 0;




ffvariables to store accelerometer output
int walx = 0;
int waly = 0:
a:

int walz

int calik = 0;
int po=sition = 0;

int count = 0;

ffsetup

const float RESOLUTION = 800:; // Resolution 1.S5g -»> 800mV/g

const float VOLTAGE 3.3;
const float ZOUT_1G = 850; f/ mv Voltage @ 1G
const int N = 50;

ff Connect the X,Y and Z pin to A0,Al and A2 respectively

const int xaxis = 0;
const int vaxis = 1;
2;

const int zaxis

float zeroX, zero¥Y, =zZerol;
int X, ¥, Z;
float aax, aay, aaz:;

S Boco Timers
ffunsigned long accTimer;
ffunsigned long lasthccTimer;

byte mode;

#define DEBUG

float zeroPoint (int axis)
{

float acc = 0;
for (int § = 0; j < N; j++)

{
acc = acc + ({(float) analogBead({axis) * 5000) /
delav (20);

}

return acc / N:

vold setup() {
f/ Open serial communications and wait for port to
Serial.begin (9600):

Serial.print ("Initializing 5D card...");

if (!'SD.begin(4)) {
Serial.println("initialization failed!"):
while (1):

}

Serial . .println{"initialization done.");

winMode (xaxis. INPUT)Y:

1023.0) ;

open:



.

void setup() {
/f Open serial communications and wait for port to open:
Serial.begin (9600);

Serial.print ("Initializing 5D card..."):

if (!SD.begin(4)) {
Serial.println("initialization failed!");
while (1):

}

Serial.println("initialization done."):

pinMode (xaxis, INFUT):
pinMode (yaxis, INPUT):
pinMode (zaxis, INPUT):

zeroX = zeroPolnt (Xaxis):
zero¥ = zeroPoint (yaxis):;
zercZ = zercoPoint (zaxis);

zeroZ = zerol - ZOUT_1G;

// open the file. note that only one file can be open at a time,
// so you have to close this one before opening another.
myFile = SD.open("test.txt", FILE_WRITE);

f/f if the file opened okay, write to it:

/ /PULSESENSOR
pulseSensor.analognput (PulseWire) ;
pulseSensor.setThreshold (Threshold) ;

if (pulseSensor.begin()) {
Serial.println("We created a pulseSensor Cbject !"); //This prints one time at Arduino power-up, or on Arduino reset.

woid loop() {
// mothing happens after setup

if (myFile) {
for (int i1 = 0; i1 < 40; i++) { //later change the 10 to 86400 (seconds in a day)
Serial.println("Writing to test.txt...");
f/myFile.println("testing 1, 2, 3."):
tempRoutine ()5

int myBPM = pulseSensor.getBeatsPerMinute(): // Calls function on our pulseSensor object that returns BPM as an "int".
if (pulseSensor.sawStartOfBeat()) { f/ Constantly test to see if "a beat happened”.

myFile.print ("B"): // Print phrase "BBM: "

myFile.print (myBPM) ; // Print the value inside of myBPM.

myFile.print ("\n");

}

delav(20);

accRoutine (};
}
// close the file:
myFile.close();
Serial.print ("\n");
Serial.println("done.");



accRoutine () ;
}
// close the file:
myFile.close ()
Serial.print("\n"):
Serial.println("done.");

} else {
/f if the file didn't open, print an error:
Serial.println("error opening test.txt");

}

delay (1000) ;

// re-open the file for reading:

myFile = SD.open("test.txt"™);

if (myFile) {
Serial.println("test.txc:");

// read from the file until there's nothing else in it:
while (myFile.available()) {
Serial.write (myFile.read()):
Serial.write (myFile.read());
Serial.write (myFile.read()):
Serial.write (myFile.read())}:
Serial.write (myFile.read()):
Serial.write (myFile.read()):
Serial.write (myFile.read()):
delay (100);
}
// close the file:
myFile.close ()
} else {
Jf if the file didn't open, print an error:
Serial.println("error opening test.txt"):

SD.remove ("test.tXL™);

void tempRoutine() {

sht.readSensox():

myFile.pri

myFile.pr
myFile.px

nt ("H"); myFile.print (sht.getHumidity()); myFile.print ("\n"); //Humidity in percent
nt ("I"); myFile.print (sht.getTemperature C()); myFile.print ("\n"}; //Temperature in *C
("D") ; myFile.print (sht.getDewPoint()); myFile.p £ ("\n"); J/Dew Point in *C

void accRoutine ()

{
X = analogRead(xaxis);
y = analogRead (yaxis);
z = analogRead(zaxis):
aax = (((x * 5000.0) / 1023.0) - zeroX) / RESOLUTICN:
aay = (((y * 5000.0) / 1023.0) - zeroY¥) / RESOLUTICHN;
aaz = (((z * 5000.0) / 1023.0) - zeroZ) / RESOLUTICHN;

f/ computes sample time

J/accTimer = millis() - lasthccTimer;
// updates last reading timer
f/lasthecTimer = millis():



delay (1000);

/{ re-open the file for reading:

myFile = SD.open("test.txt"™);

if (myFile) {
Serial.println("test.txt:™);

S/ read from the file until there's nothing =lse in it:
while (myFile.available(}) {
Serial.write (myFile.read());
Serial .write (myFile.read()):
Serial.write (myFile.read());
Serial.write (myFile.read());
Serial . .write (myFile.read()):
Serial.write (myFile.read());
Serial.write (myFile.read());
delay (100);
}
// close the file:
myFile.clo=e ()
} else {
J/ if the file didn't open, print an error:
Serial.println("error opening test.txt"):

SD.remove ("test.txt™);

void tempRoutine () {

sht.readSensor ()

myFile.print ("H"); myFile.pri
myFile.print ("T"); myFile.pr
myFile.print ("D"); myFile.prin

nt (sht.getHumidicy()); myFile.pxr

(sht.getDewPoint () ) myFile.pr

volid accRoutine ()

{

¥ = analogBead (xaxis=):
y = analogRead (yaxis);

z = analogBead (zaxis);

aax = (((x * 5000.0) / 1023.0) - zeroX) / RESCLUTION;
aay = (({y * 5000.0) / 1023.0) - zeroY) / RESOLUTICN;
aaz = (((z * 5000.0) / 1023.0) - zeroZ) / RESOLUTICON;

J// computes sample time

ffaccTimer = millis() - lasthRccTimer:;
// updates last reading timer
fflasthecTimer = millis();

myFile.print ("X"); myFile.print (aax); myFile.print("\n"):
myFile.print ("Y"); myFile.print(aay); myFile.print("\n"):
myFile.print ("Z"): myFile.print(aaz): myFile.print ("\n\n"):
ffSerial.print (™ @ "):

//Serial.print (accTimer) ;

f/8erial.print (" ms/sample™);
S fSerial.println():

nt ("\n"); //Humidity in percent
nt (sht.getTemperature C()); myFile.print("\n"): J/Temperature in *C
nt {("\n") ; J/Dew Point in *C



